CRM Plus Batch - AI-Powered Intelligence
Process up to 10 profiles concurrently with premium AI-powered insights including real-time market intelligence via Perplexity AI.
When to Use
See the consolidated guidance: When to Use Each Batch Endpoint
Endpoint Details
| Property | Value |
|---|---|
| Endpoint | POST /crm_plus_batch |
| Cost | 3 credits × number of profiles |
| Max Profiles | 10 per request |
| Tier Required | Plus |
| Processing Time | ~15-25 seconds for 5 profiles |
Overview
The CRM Plus Batch endpoint provides the most comprehensive analysis available, combining complete personality insights with real-time AI-powered market intelligence from Perplexity AI. Process multiple profiles simultaneously with premium features.
Key Features
- ✅ Concurrent Processing: Up to 10 profiles analyzed simultaneously
- ✅ Pay-per-Success: Only charged for successfully analyzed profiles
- 🤖 AI-Powered Insights: Real-time market intelligence via Perplexity AI
- ✅ Complete Analysis: OCEAN, MBTI, buyer manual, and AI insights
- ✅ Market Context: Current industry trends and company news
Plus Additional AI-Powered Insights
- 🤖 Real-time Market Intelligence - Current industry trends and market dynamics
- 🤖 Company Context Analysis - Recent news, strategic initiatives, market positioning
- 🤖 Competitive Landscape - Industry positioning and competitive advantages
- 🤖 Enhanced Pain Points - AI-identified challenges based on current market conditions
- 🤖 Strategic Recommendations - AI-generated engagement strategies
Request
Headers
| Header | Required | Value |
|---|---|---|
Content-Type | Yes | application/json |
x-api-key | Yes | Your API key |
Request Body
{
"profiles": [
{
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft",
"contexto_adicional": "Interested in cloud solutions"
},
{
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
}
]
}
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
profiles | array | Yes | Array of profile objects (max 10) |
profiles[].primeiro_nome | string | Yes | First name |
profiles[].ultimo_nome | string | Yes | Last name |
profiles[].empresa | string | Yes | Company name |
profiles[].contexto_adicional | string | No | Additional context for AI analysis |
Example Request
cURL
curl -X POST "https://api.fluenceinsights.com/crm_plus_batch" \
-H "Content-Type: application/json" \
-H "x-api-key: your-api-key-here" \
-d '{
"profiles": [
{"primeiro_nome": "Satya", "ultimo_nome": "Nadella", "empresa": "Microsoft"},
{"primeiro_nome": "Sundar", "ultimo_nome": "Pichai", "empresa": "Google"}
]
}'
Python
import requests
API_URL = "https://api.fluenceinsights.com/crm_plus_batch"
API_KEY = "your-api-key-here"
profiles = [
{
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft",
"contexto_adicional": "Enterprise cloud transformation"
},
{
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
}
]
response = requests.post(
API_URL,
headers={
"Content-Type": "application/json",
"x-api-key": API_KEY
},
json={"profiles": profiles}
)
if response.status_code == 200:
data = response.json()
summary = data['batch_summary']
print(f"✅ Processed {summary['successful']}/{summary['total_profiles']} profiles")
print(f"⚡ Time: {summary['processing_time_ms']/1000:.1f}s")
print(f"💰 Credits: {data['billing_info']['creditos_utilizados']}")
# Access AI insights
for result in data['results']:
if result['success']:
analise = result['analise']
print(f"\n{result['input']['primeiro_nome']} - {result['input']['empresa']}:")
print(f" Market Trends: {analise['ai_insights']['market_trends']}")
print(f" Strategic Recommendations: {analise['ai_insights']['engagement_strategy']}")
else:
print(f"❌ Error: {response.json()}")
JavaScript/Node.js
const axios = require('axios');
const API_URL = 'https://api.fluenceinsights.com/crm_plus_batch';
const API_KEY = 'your-api-key-here';
async function analyzeBatchWithAI() {
const profiles = [
{
primeiro_nome: 'Satya',
ultimo_nome: 'Nadella',
empresa: 'Microsoft',
contexto_adicional: 'Cloud transformation'
},
{
primeiro_nome: 'Sundar',
ultimo_nome: 'Pichai',
empresa: 'Google'
}
];
try {
const response = await axios.post(
API_URL,
{ profiles },
{
headers: {
'Content-Type': 'application/json',
'x-api-key': API_KEY
}
}
);
const { batch_summary, results, billing_info } = response.data;
console.log(`✅ ${batch_summary.successful}/${batch_summary.total_profiles} profiles`);
console.log(`💰 Credits: ${billing_info.creditos_utilizados}`);
results.forEach(result => {
if (result.success) {
const { analise, input } = result;
console.log(`\n${input.primeiro_nome} - ${input.empresa}:`);
console.log(`Market Trends: ${analise.ai_insights.market_trends}`);
}
});
} catch (error) {
console.error('❌ Error:', error.response?.data || error.message);
}
}
analyzeBatchWithAI();
Response
Success Response (200)
{
"success": true,
"batch_summary": {
"total_profiles": 2,
"successful": 2,
"failed": 0,
"processing_time_ms": 18456.32
},
"results": [
{
"success": true,
"profile_index": 0,
"input": {
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft"
},
"analise": {
"cargo": "Chairman and CEO",
"tipo_stakeholder": "C-Level Executive",
"ocean": {
"openness": 8.5,
"conscientiousness": 9.0,
"extraversion": 7.5,
"agreeableness": 8.0,
"neuroticism": 3.0
},
"mbti": {
"tipo": "ENTJ",
"descricao": "The Commander - Strategic, ambitious, natural leader",
"pontos_fortes": [
"Strategic thinking",
"Decisive leadership",
"Innovation focus"
],
"comunicacao_preferida": "Direct, goal-oriented, data-driven"
},
"manual_comprador": {
"dores": [
"Digital transformation challenges",
"Cloud migration complexity",
"Competitive market pressure"
],
"ganhos_procurados": [
"Innovation acceleration",
"Market leadership",
"Business growth"
],
"prioridades": [
"Technology innovation",
"Customer success",
"Organizational culture"
]
},
"linguagem_impacto": [
"Innovation drives growth",
"Empowering transformation",
"Customer-first approach"
],
"ai_insights": {
"market_trends": "Microsoft is focusing heavily on AI integration across all products, with significant investments in OpenAI and Azure AI services. The enterprise cloud market shows 25% YoY growth.",
"company_context": "Recently announced major AI partnerships and Azure expansion into new regions. Microsoft reported strong Q2 earnings driven by cloud growth.",
"competitive_landscape": "Leading position in enterprise cloud with Azure, competing directly with AWS and Google Cloud. Strong differentiation through AI and productivity tools integration.",
"enhanced_pain_points": [
"Balancing rapid AI innovation with enterprise security and compliance",
"Managing multi-cloud strategies for enterprise customers",
"Addressing talent shortage in AI and cloud engineering"
],
"engagement_strategy": "Focus on AI-driven cloud transformation solutions. Emphasize security, compliance, and seamless integration with existing Microsoft ecosystem. Highlight ROI from productivity gains and innovation acceleration.",
"key_initiatives": [
"AI Copilot integration across Microsoft 365",
"Azure OpenAI Service expansion",
"Sustainability commitments and carbon-negative goals"
]
}
}
},
{
"success": true,
"profile_index": 1,
"input": {
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
},
"analise": {
"cargo": "CEO",
"tipo_stakeholder": "C-Level Executive",
"ocean": {...},
"mbti": {...},
"manual_comprador": {...},
"linguagem_impacto": [...],
"ai_insights": {
"market_trends": "Google is prioritizing AI-first product development, with Gemini AI competing directly with GPT models...",
"company_context": "Recent Gemini AI launch and integration into Google Workspace...",
"competitive_landscape": "Strong position in search and digital advertising, expanding into cloud and AI...",
"enhanced_pain_points": [...],
"engagement_strategy": "...",
"key_initiatives": [...]
}
}
}
],
"billing_info": {
"creditos_por_perfil": 3,
"perfis_processados": 2,
"creditos_utilizados": 6,
"creditos_restantes": 194,
"tipo_plano": "plus"
}
}
Plus Tier Additional Fields
| Field | Type | Description |
|---|---|---|
ai_insights | object | AI-powered market intelligence |
ai_insights.market_trends | string | Current industry trends and dynamics |
ai_insights.company_context | string | Recent news and strategic initiatives |
ai_insights.competitive_landscape | string | Industry positioning analysis |
ai_insights.enhanced_pain_points | array | AI-identified current challenges |
ai_insights.engagement_strategy | string | Strategic recommendations |
ai_insights.key_initiatives | array | Current company priorities |
Error Responses
Insufficient Credits (402)
{
"error": "Insufficient credits",
"message": "Batch requires 30 credits but you have 20",
"profiles_requested": 10,
"credits_per_profile": 3,
"credits_available": 20
}
Batch Size Exceeded (400)
{
"error": "Batch size exceeds maximum",
"message": "Maximum 10 profiles per batch, received 15",
"max_batch_size": 10,
"profiles_received": 15
}
AI Service Unavailable (503)
{
"success": true,
"batch_summary": {
"total_profiles": 2,
"successful": 1,
"failed": 1
},
"results": [
{
"success": true,
"profile_index": 0,
"analise": {...}
},
{
"success": false,
"profile_index": 1,
"error": "AI insights temporarily unavailable",
"error_code": "AI_SERVICE_UNAVAILABLE"
}
]
}
Credit Calculation
| Scenario | Calculation | Total Credits |
|---|---|---|
| 5 profiles, all successful | 3 × 5 | 15 credits |
| 10 profiles, all successful | 3 × 10 | 30 credits |
| 10 profiles, 8 successful | 3 × 8 | 24 credits |
Note: You are only charged for successfully analyzed profiles. Failed analyses do not consume credits.
Performance Benchmarks
| Profiles | Single Requests | Batch Request | Time Saved |
|---|---|---|---|
| 5 profiles | ~75-125 sec | ~20-30 sec | 75% faster |
| 10 profiles | ~150-250 sec | ~40-60 sec | 75% faster |
Note: Plus tier takes longer due to real-time AI processing, but batch processing still provides significant time savings.
Use Cases
Enterprise Sales Intelligence
def analyze_enterprise_prospects(prospects):
"""Analyze enterprise prospects with AI insights"""
batch_size = 10
enriched_data = []
for i in range(0, len(prospects), batch_size):
batch = prospects[i:i + batch_size]
response = requests.post(API_URL, json={"profiles": batch}, headers=headers)
if response.status_code == 200:
for result in response.json()['results']:
if result['success']:
ai_insights = result['analise']['ai_insights']
enriched_data.append({
'name': f"{result['input']['primeiro_nome']} {result['input']['ultimo_nome']}",
'company': result['input']['empresa'],
'market_trends': ai_insights['market_trends'],
'engagement_strategy': ai_insights['engagement_strategy'],
'key_initiatives': ai_insights['key_initiatives'],
'pain_points': ai_insights['enhanced_pain_points']
})
time.sleep(1) # Rate limiting for AI-powered requests
return enriched_data
Strategic Account Planning
def create_account_plan(executives):
"""Create strategic account plan with AI insights"""
response = requests.post(
API_URL,
json={"profiles": executives},
headers=headers
)
if response.status_code == 200:
results = response.json()['results']
account_plan = {
'executives': [],
'market_context': [],
'strategic_recommendations': []
}
for result in results:
if result['success']:
analise = result['analise']
account_plan['executives'].append({
'name': f"{result['input']['primeiro_nome']} {result['input']['ultimo_nome']}",
'position': analise['cargo'],
'mbti': analise['mbti']['tipo'],
'communication_style': analise['mbti']['comunicacao_preferida']
})
account_plan['market_context'].append(analise['ai_insights']['market_trends'])
account_plan['strategic_recommendations'].append(
analise['ai_insights']['engagement_strategy']
)
return account_plan
Best Practices
1. Optimize for AI Processing
- Context is Key: Use
contexto_adicionalto provide relevant context for better AI insights - Batch Size: 5-10 profiles per batch recommended for Plus tier
- Rate Limiting: Add 1-2s delay between batches due to AI processing
2. Leverage AI Insights
def extract_actionable_insights(batch_results):
"""Extract actionable insights from AI analysis"""
insights = {
'market_opportunities': [],
'engagement_strategies': [],
'common_pain_points': []
}
for result in batch_results['results']:
if result['success']:
ai = result['analise']['ai_insights']
insights['market_opportunities'].append(ai['market_trends'])
insights['engagement_strategies'].append(ai['engagement_strategy'])
insights['common_pain_points'].extend(ai['enhanced_pain_points'])
return insights
3. Credit Management
# Plus tier requires more credits - verify before processing
credits_needed = len(profiles) * 3 # 3 credits per profile
current_credits = check_credits(API_KEY)
if current_credits < credits_needed:
print(f"⚠️ Need {credits_needed} credits, have {current_credits}")
# Consider using Complete tier instead
use_complete_tier = True
else:
process_plus_batch(profiles)
When to Use This Endpoint
✅ Use CRM Plus Batch When:
- Need real-time market intelligence for multiple prospects
- Building strategic account plans
- Analyzing competitive positioning
- Enterprise sales requiring deep insights
- Creating personalized engagement strategies at scale
❌ Use Lower Tiers When:
- Basic contact enrichment is sufficient
- Working with limited budget
- Don't need real-time market data
- Processing high volumes (use Complete tier)
Comparison with Other Tiers
| Feature | Basic Batch | Complete Batch | Plus Batch |
|---|---|---|---|
| Credits per profile | 1 | 2 | 3 |
| OCEAN scores | ❌ | ✅ | ✅ |
| MBTI type | ❌ | ✅ | ✅ |
| Buyer playbook | Basic | Complete | Complete |
| AI market insights | ❌ | ❌ | ✅ |
| Company context | ❌ | ❌ | ✅ |
| Engagement strategy | ❌ | ❌ | ✅ |
| Processing time | ~8-10s | ~8-10s | ~15-25s |