Skip to main content

CRM Plus Batch - AI-Powered Intelligence

Process up to 10 profiles concurrently with premium AI-powered insights including real-time market intelligence via Perplexity AI.

When to Use

See the consolidated guidance: When to Use Each Batch Endpoint

Endpoint Details

PropertyValue
EndpointPOST /crm_plus_batch
Cost3 credits × number of profiles
Max Profiles10 per request
Tier RequiredPlus
Processing Time~15-25 seconds for 5 profiles

Overview

The CRM Plus Batch endpoint provides the most comprehensive analysis available, combining complete personality insights with real-time AI-powered market intelligence from Perplexity AI. Process multiple profiles simultaneously with premium features.

Key Features

  • Concurrent Processing: Up to 10 profiles analyzed simultaneously
  • Pay-per-Success: Only charged for successfully analyzed profiles
  • 🤖 AI-Powered Insights: Real-time market intelligence via Perplexity AI
  • Complete Analysis: OCEAN, MBTI, buyer manual, and AI insights
  • Market Context: Current industry trends and company news

Plus Additional AI-Powered Insights

  • 🤖 Real-time Market Intelligence - Current industry trends and market dynamics
  • 🤖 Company Context Analysis - Recent news, strategic initiatives, market positioning
  • 🤖 Competitive Landscape - Industry positioning and competitive advantages
  • 🤖 Enhanced Pain Points - AI-identified challenges based on current market conditions
  • 🤖 Strategic Recommendations - AI-generated engagement strategies

Request

Headers

HeaderRequiredValue
Content-TypeYesapplication/json
x-api-keyYesYour API key

Request Body

{
"profiles": [
{
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft",
"contexto_adicional": "Interested in cloud solutions"
},
{
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
}
]
}

Parameters

ParameterTypeRequiredDescription
profilesarrayYesArray of profile objects (max 10)
profiles[].primeiro_nomestringYesFirst name
profiles[].ultimo_nomestringYesLast name
profiles[].empresastringYesCompany name
profiles[].contexto_adicionalstringNoAdditional context for AI analysis

Example Request

cURL

curl -X POST "https://api.fluenceinsights.com/crm_plus_batch" \
-H "Content-Type: application/json" \
-H "x-api-key: your-api-key-here" \
-d '{
"profiles": [
{"primeiro_nome": "Satya", "ultimo_nome": "Nadella", "empresa": "Microsoft"},
{"primeiro_nome": "Sundar", "ultimo_nome": "Pichai", "empresa": "Google"}
]
}'

Python

import requests

API_URL = "https://api.fluenceinsights.com/crm_plus_batch"
API_KEY = "your-api-key-here"

profiles = [
{
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft",
"contexto_adicional": "Enterprise cloud transformation"
},
{
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
}
]

response = requests.post(
API_URL,
headers={
"Content-Type": "application/json",
"x-api-key": API_KEY
},
json={"profiles": profiles}
)

if response.status_code == 200:
data = response.json()
summary = data['batch_summary']
print(f"✅ Processed {summary['successful']}/{summary['total_profiles']} profiles")
print(f"⚡ Time: {summary['processing_time_ms']/1000:.1f}s")
print(f"💰 Credits: {data['billing_info']['creditos_utilizados']}")

# Access AI insights
for result in data['results']:
if result['success']:
analise = result['analise']
print(f"\n{result['input']['primeiro_nome']} - {result['input']['empresa']}:")
print(f" Market Trends: {analise['ai_insights']['market_trends']}")
print(f" Strategic Recommendations: {analise['ai_insights']['engagement_strategy']}")
else:
print(f"❌ Error: {response.json()}")

JavaScript/Node.js

const axios = require('axios');

const API_URL = 'https://api.fluenceinsights.com/crm_plus_batch';
const API_KEY = 'your-api-key-here';

async function analyzeBatchWithAI() {
const profiles = [
{
primeiro_nome: 'Satya',
ultimo_nome: 'Nadella',
empresa: 'Microsoft',
contexto_adicional: 'Cloud transformation'
},
{
primeiro_nome: 'Sundar',
ultimo_nome: 'Pichai',
empresa: 'Google'
}
];

try {
const response = await axios.post(
API_URL,
{ profiles },
{
headers: {
'Content-Type': 'application/json',
'x-api-key': API_KEY
}
}
);

const { batch_summary, results, billing_info } = response.data;
console.log(`${batch_summary.successful}/${batch_summary.total_profiles} profiles`);
console.log(`💰 Credits: ${billing_info.creditos_utilizados}`);

results.forEach(result => {
if (result.success) {
const { analise, input } = result;
console.log(`\n${input.primeiro_nome} - ${input.empresa}:`);
console.log(`Market Trends: ${analise.ai_insights.market_trends}`);
}
});
} catch (error) {
console.error('❌ Error:', error.response?.data || error.message);
}
}

analyzeBatchWithAI();

Response

Success Response (200)

{
"success": true,
"batch_summary": {
"total_profiles": 2,
"successful": 2,
"failed": 0,
"processing_time_ms": 18456.32
},
"results": [
{
"success": true,
"profile_index": 0,
"input": {
"primeiro_nome": "Satya",
"ultimo_nome": "Nadella",
"empresa": "Microsoft"
},
"analise": {
"cargo": "Chairman and CEO",
"tipo_stakeholder": "C-Level Executive",
"ocean": {
"openness": 8.5,
"conscientiousness": 9.0,
"extraversion": 7.5,
"agreeableness": 8.0,
"neuroticism": 3.0
},
"mbti": {
"tipo": "ENTJ",
"descricao": "The Commander - Strategic, ambitious, natural leader",
"pontos_fortes": [
"Strategic thinking",
"Decisive leadership",
"Innovation focus"
],
"comunicacao_preferida": "Direct, goal-oriented, data-driven"
},
"manual_comprador": {
"dores": [
"Digital transformation challenges",
"Cloud migration complexity",
"Competitive market pressure"
],
"ganhos_procurados": [
"Innovation acceleration",
"Market leadership",
"Business growth"
],
"prioridades": [
"Technology innovation",
"Customer success",
"Organizational culture"
]
},
"linguagem_impacto": [
"Innovation drives growth",
"Empowering transformation",
"Customer-first approach"
],
"ai_insights": {
"market_trends": "Microsoft is focusing heavily on AI integration across all products, with significant investments in OpenAI and Azure AI services. The enterprise cloud market shows 25% YoY growth.",
"company_context": "Recently announced major AI partnerships and Azure expansion into new regions. Microsoft reported strong Q2 earnings driven by cloud growth.",
"competitive_landscape": "Leading position in enterprise cloud with Azure, competing directly with AWS and Google Cloud. Strong differentiation through AI and productivity tools integration.",
"enhanced_pain_points": [
"Balancing rapid AI innovation with enterprise security and compliance",
"Managing multi-cloud strategies for enterprise customers",
"Addressing talent shortage in AI and cloud engineering"
],
"engagement_strategy": "Focus on AI-driven cloud transformation solutions. Emphasize security, compliance, and seamless integration with existing Microsoft ecosystem. Highlight ROI from productivity gains and innovation acceleration.",
"key_initiatives": [
"AI Copilot integration across Microsoft 365",
"Azure OpenAI Service expansion",
"Sustainability commitments and carbon-negative goals"
]
}
}
},
{
"success": true,
"profile_index": 1,
"input": {
"primeiro_nome": "Sundar",
"ultimo_nome": "Pichai",
"empresa": "Google"
},
"analise": {
"cargo": "CEO",
"tipo_stakeholder": "C-Level Executive",
"ocean": {...},
"mbti": {...},
"manual_comprador": {...},
"linguagem_impacto": [...],
"ai_insights": {
"market_trends": "Google is prioritizing AI-first product development, with Gemini AI competing directly with GPT models...",
"company_context": "Recent Gemini AI launch and integration into Google Workspace...",
"competitive_landscape": "Strong position in search and digital advertising, expanding into cloud and AI...",
"enhanced_pain_points": [...],
"engagement_strategy": "...",
"key_initiatives": [...]
}
}
}
],
"billing_info": {
"creditos_por_perfil": 3,
"perfis_processados": 2,
"creditos_utilizados": 6,
"creditos_restantes": 194,
"tipo_plano": "plus"
}
}

Plus Tier Additional Fields

FieldTypeDescription
ai_insightsobjectAI-powered market intelligence
ai_insights.market_trendsstringCurrent industry trends and dynamics
ai_insights.company_contextstringRecent news and strategic initiatives
ai_insights.competitive_landscapestringIndustry positioning analysis
ai_insights.enhanced_pain_pointsarrayAI-identified current challenges
ai_insights.engagement_strategystringStrategic recommendations
ai_insights.key_initiativesarrayCurrent company priorities

Error Responses

Insufficient Credits (402)

{
"error": "Insufficient credits",
"message": "Batch requires 30 credits but you have 20",
"profiles_requested": 10,
"credits_per_profile": 3,
"credits_available": 20
}

Batch Size Exceeded (400)

{
"error": "Batch size exceeds maximum",
"message": "Maximum 10 profiles per batch, received 15",
"max_batch_size": 10,
"profiles_received": 15
}

AI Service Unavailable (503)

{
"success": true,
"batch_summary": {
"total_profiles": 2,
"successful": 1,
"failed": 1
},
"results": [
{
"success": true,
"profile_index": 0,
"analise": {...}
},
{
"success": false,
"profile_index": 1,
"error": "AI insights temporarily unavailable",
"error_code": "AI_SERVICE_UNAVAILABLE"
}
]
}

Credit Calculation

ScenarioCalculationTotal Credits
5 profiles, all successful3 × 515 credits
10 profiles, all successful3 × 1030 credits
10 profiles, 8 successful3 × 824 credits

Note: You are only charged for successfully analyzed profiles. Failed analyses do not consume credits.

Performance Benchmarks

ProfilesSingle RequestsBatch RequestTime Saved
5 profiles~75-125 sec~20-30 sec75% faster
10 profiles~150-250 sec~40-60 sec75% faster

Note: Plus tier takes longer due to real-time AI processing, but batch processing still provides significant time savings.

Use Cases

Enterprise Sales Intelligence

def analyze_enterprise_prospects(prospects):
"""Analyze enterprise prospects with AI insights"""
batch_size = 10
enriched_data = []

for i in range(0, len(prospects), batch_size):
batch = prospects[i:i + batch_size]
response = requests.post(API_URL, json={"profiles": batch}, headers=headers)

if response.status_code == 200:
for result in response.json()['results']:
if result['success']:
ai_insights = result['analise']['ai_insights']
enriched_data.append({
'name': f"{result['input']['primeiro_nome']} {result['input']['ultimo_nome']}",
'company': result['input']['empresa'],
'market_trends': ai_insights['market_trends'],
'engagement_strategy': ai_insights['engagement_strategy'],
'key_initiatives': ai_insights['key_initiatives'],
'pain_points': ai_insights['enhanced_pain_points']
})

time.sleep(1) # Rate limiting for AI-powered requests

return enriched_data

Strategic Account Planning

def create_account_plan(executives):
"""Create strategic account plan with AI insights"""
response = requests.post(
API_URL,
json={"profiles": executives},
headers=headers
)

if response.status_code == 200:
results = response.json()['results']

account_plan = {
'executives': [],
'market_context': [],
'strategic_recommendations': []
}

for result in results:
if result['success']:
analise = result['analise']
account_plan['executives'].append({
'name': f"{result['input']['primeiro_nome']} {result['input']['ultimo_nome']}",
'position': analise['cargo'],
'mbti': analise['mbti']['tipo'],
'communication_style': analise['mbti']['comunicacao_preferida']
})
account_plan['market_context'].append(analise['ai_insights']['market_trends'])
account_plan['strategic_recommendations'].append(
analise['ai_insights']['engagement_strategy']
)

return account_plan

Best Practices

1. Optimize for AI Processing

  • Context is Key: Use contexto_adicional to provide relevant context for better AI insights
  • Batch Size: 5-10 profiles per batch recommended for Plus tier
  • Rate Limiting: Add 1-2s delay between batches due to AI processing

2. Leverage AI Insights

def extract_actionable_insights(batch_results):
"""Extract actionable insights from AI analysis"""
insights = {
'market_opportunities': [],
'engagement_strategies': [],
'common_pain_points': []
}

for result in batch_results['results']:
if result['success']:
ai = result['analise']['ai_insights']
insights['market_opportunities'].append(ai['market_trends'])
insights['engagement_strategies'].append(ai['engagement_strategy'])
insights['common_pain_points'].extend(ai['enhanced_pain_points'])

return insights

3. Credit Management

# Plus tier requires more credits - verify before processing
credits_needed = len(profiles) * 3 # 3 credits per profile
current_credits = check_credits(API_KEY)

if current_credits < credits_needed:
print(f"⚠️ Need {credits_needed} credits, have {current_credits}")
# Consider using Complete tier instead
use_complete_tier = True
else:
process_plus_batch(profiles)

When to Use This Endpoint

✅ Use CRM Plus Batch When:

  • Need real-time market intelligence for multiple prospects
  • Building strategic account plans
  • Analyzing competitive positioning
  • Enterprise sales requiring deep insights
  • Creating personalized engagement strategies at scale

❌ Use Lower Tiers When:

  • Basic contact enrichment is sufficient
  • Working with limited budget
  • Don't need real-time market data
  • Processing high volumes (use Complete tier)

Comparison with Other Tiers

FeatureBasic BatchComplete BatchPlus Batch
Credits per profile123
OCEAN scores
MBTI type
Buyer playbookBasicCompleteComplete
AI market insights
Company context
Engagement strategy
Processing time~8-10s~8-10s~15-25s

Next Steps